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Electronic Companion
Appendix A: Impact of Packing Constraint on Protocol Fairness

This appendix details the effect of a packing constraint (Section 2.3) on the fairness metrics.

Figure EC.1 illustrates the impact of adding the packing constraint with parameter 6 = 0.25 on the SL index
for both protocols. Recent victory margins (albeit in states with ongoing gerrymandering disputes) suggest
0 = 0.25 is large enough to permit districts as extreme as those seen in practice: Maryland’s 7th congressional
district and Wisconsin’s 4th were each won with approximately 75% majorities in 2018 (Maryland State
Board of Elections 2018, Wisconsin Elections Commission 2018). A visual comparison of Figures 3 and EC.1
reveals that adding the packing constraint é = 0.25 to either protocol increases the SL index for nearly all
scenarios, meaning the resulting seat-shares are less proportional. This effect, most drastic at normalized

vote-shares far from 0.5, accentuates bisection’s proportionality advantage over ICYF.

Figure EC.1 Impact of packing constraint on the Sainte-Lagué index.
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Note. Plots of the Sainte-Lagué index for 1-150 districts and 40%—60% normalized vote-shares resulting from the

(a) bisection and (b) I-cut-you-freeze protocols in the CN setting, under a packing constraint of § = 0.25.

Though inimical to the SL index, the packing constraint improves the efficiency gap in some circumstances.

For equipopulous districts and two parties, Stephanopoulos and McGhee (2018) observe the efficiency gap is
(seat-margin) — 2(vote-margin) = (f(v) — 0.5) — 2(v — 0.5).

Hence a protocol utility curve with zero efficiency gap must pass through the point (0.5,0.5) and have a
slope of two.The limiting protocol utility curve for the bisection protocol is this curve exactly when § = 0.25,
meaning the efficiency gap converges to zero for all feasible normalized vote-shares. Figure EC.2 shows the
packing constraint’s impact on efficiency gap for both protocols. Comparing Figures 4 and EC.2, the packing
constraint 0 = 0.25 improves the efficiency gap for bisection to within +8% for most district counts and

normalized vote-shares. ICYF, however, produces worse efficiency gaps, generally falling outside 8% for
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Plots of the efficiency gap for 1-150 districts and 40%—-60% normalized vote-shares resulting {rom the (a)

bisection and (b) I-cut-you-freeze protocols in the CN setting, with a ¢ = 0.25 packing constraint.

normalized vote-shares above 55% and below 45%. One possible explanation is that the weaker player in

ICYF heavily relies on strategic packing (see Lemma 3.6 of Pegden et al. 2017).

Partisan asymmetry worsens with the added packing constraint, as evidenced by Figure EC.3 in contrast

with Figure 5. Both protocols remain symmetric near 50% normalized vote-share, but asymmetry increases

for other vote-shares. Bisection suffers a more pronounced increase than ICYF, especially near the extremes.
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Note. Panels (a) and (b) plot partisan asymmetry for district plans produced by the (a) bisection and (b) ICYF pro-

tocols in the CN setting for 1-150 districts and 40%-60% normalized vote-shares, with a 6 = 0.25 packing constraint.
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Appendix B: Motivation for a Compactness Objective in the Bisection Heuristic

This section motivates the inclusion of a compactness objective in the bisection heuristic (Section 4.1) for
the discrete geometric (DG) setting. We show how the bisection heuristic performs with and without a
compactness objective when applied to congressional redistricting in Iowa. Recall that in the DG setting,
every round of bisection divides each given region into two connected and balanced pieces. The bisection
heuristic proposes that the drawing player allocates the same amount of vote-share to each piece as is optimal
in the CN setting. Bisecting each round with these vote-share requirements amounts to solving a feasibility
problem modeled by MIP constraints (8b)-(8q). If the problem is infeasible, the vote-share requirements are
reduced, and the MIP is solved again; this is repeated until a feasible solution is found.

For some instances, solving the feasibility problem results in a bisection into pieces with non-compact
shapes. A non-compact bisection in the first round can drastically reduce the number of feasible bisections in
subsequent rounds. To illustrate this, consider the first round of bisecting the Iowa instance (Section 4.4); this
instance requires two rounds of bisection. The shapes of the bisections produced when either player draws
first (depicted in Figure EC.4) are non-compact, snaking around the state. The second round, regardless of
the first player, yields no feasible bisection in either of the two pieces. This demonstrates how the first-round

bisection may prevent the game from generating any feasible solutions.

Figure EC.4 Bisection heuristic applied to lowa’s county-level instance without a compactness objective.

(a) D draws the first round (b) R draws the first round
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Note. Panels (a) and (b) depict the first round bisection in G when (a) D and (b) R draws the first round. Solid

edges are edges within each of the two pieces, while dotted edges are cut-edges.

Consider the bisection MIP with a compactness objective (8a) that minimizes the number of cut-edges
(edges that cross two pieces) in the bisection. When the objective is included, the Iowa instance yields a
compact first round bisection (depicted in Figure EC.5). The second round, regardless of the first player,
yields a feasible bisection in both pieces. See Section 4.4 for an analysis on the second round bisection. Hence,
including a compactness objective discourages the bisection heuristic from constructing pieces that would

cause the protocol to terminate without producing a feasible district plan.
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Figure EC.5 Bisection heuristic applied to lowa’s county-level instance with a compactness objective.
(a) D draws the first round (b) R draws the first round

Note. Panels (a) and (b) depict the first round bisection in G when (a) D and (b) R draws the first round. Solid

edges are edges within each of the two pieces, while dotted edges are cut-edges.
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Appendix C: Details of Computational Experiments

This appendix provides additional details for the computational experiments reported in Sections 4.4 and
4.5.

C.1. Iowa Case Study: Bisection

The bisection protocol (Algorithm 1) is applied to Towa congressional redistricting using the MIP-based
bisection heuristic (Algorithm 3) to divide each set of counties into two pieces (Line 9 of Algorithm 1). With
n = 4 districts, there are two rounds, that is, two levels of the recursion tree.

Figure EC.6 depicts the results from applying the bisection protocol when D draws the first round and R
draws the second round. In the final district plan (Figure EC.6b), D wins one out of the four districts. The
vote-shares for D in the four districts are, in decreasing order, 0.54, 0.49, 0.45, and 0.34. This district plan
has an SL index of 16.70%, an efficiency gap of 15.49% in favor of R, and a partisan asymmetry of 2.84%.
The total CPU time to execute the protocol is 3.26 seconds.

Figure EC.6 Bisection protocol when D bisects first.

(a) First round: D bisects the state (b) Second round: R bisects each piece

oo

- D majority with > 10% margin
- D majority with < 10% margin
- R majority with > 10% margin
- R majority with < 10% margin

When D draws the first round, their normalized vote-share of 45% gives two wins in the CN setting, so
they try to win two districts from one piece of the bisection. To achieve this, D first attempts to allocate
at least 1.5 vote-share in the first piece, but the MIP is infeasible. Then, D reduces the target vote-share
allocation to 1 in the first piece, which yields a feasible bisection. The resulting pieces, labeled 1 and 2 in
Figure EC.6a, have D vote-shares 1.02 (51% of the two-district piece) and 0.78 (39% of the two-district
piece). Next, R divides the two pieces into four smaller pieces in the next round by allocating 50% (1) and
0% (0) vote shares in each piece’s bisection. As illustrated by Figure EC.6b, R first bisects piece 1 into a
win for R (district 1) and a win for D (district 2), then bisects piece 2 into two wins for R (districts 3 and

4). Overall, R receives one more seat than the two expected from the CN thresholds.
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Swapping turn order, Figure EC.7 depicts the results from applying the bisection protocol when R draws
the first round and D draws the second round. In the final district plan (Figure EC.7b), each party wins two
districts. The district vote-shares for R are 0.68, 0.58, 0.47, and 0.46. This district plan has an SL Index of
0.88%, an efficiency gap of 9.57% in favor of D, and a partisan asymmetry of 2.27%. The total CPU time to

execute the protocol is 2.60 seconds.

Figure EC.7 Bisection protocol when R bisects first.

(a) First round: R bisects the state (b) Second round: D bisects each piece

-

- D majority with > 10% margin
- D majority with < 10% margin
- R majority with > 10% margin
- R majority with < 10% margin

When R draws the first round, their normalized vote-share of 55% gives two wins in the CN setting, so
they try to win two districts from one piece of the bisection. To achieve this, R first attempts to allocate 1.5
vote-share in the first piece, but the MIP is infeasible. Then, R reduces the target vote-share allocation to
1 in the first piece, which yields a feasible bisection. The resulting pieces, labeled 1 and 2 in Figure EC.7a,
have R vote-shares 1.04 (52% of the two-district piece) and 1.14 (57% of the two-district piece). Note these
vote-shares do not add to 2.2 since the two pieces have different total numbers of voters. Next, D divides
the two pieces into four smaller pieces in the next round by allocating 50% (1) and 0% (0) vote shares in
each piece’s bisection. As illustrated by Figure EC.7b, D first bisects piece 1 into a win (district 1) and a
loss (district 2), then bisects piece 2 into a win (district 3) and a loss (district 4). Overall, R receives two
seats, as expected from the CN thresholds.

The DG setting bisection heuristic results differ in strategy and outcome from the outcome expected from
the CN setting’s thresholds. For the given normalized vote-shares in Iowa, the CN thresholds indicate that
the first player (D or R) can win two districts overall, both of which are from one piece of the first bisection.
However, when D draws first, the final district plan only yields one D district. When R draws first, the final
district plan yields two R districts, although they are spread across the two pieces. This discrepancy between

the final outcome and what was expected is due to a combination of (i) the inherent differences between
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Figure EC.8  |-Cut-You-Freeze protocol to draw four districts in lowa when D draws the first round.

(a) First round (D draws, R freezes) (b) Second round (R draws, D freezes)
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(¢) Third round (D draws)

- D majority with > 10% margin
- D majority with < 10% margin
- R majority with > 10% margin
- R majority with < 10% margin
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the DG and CN settings, and (ii) the approximate nature of applying a heuristic when compared to optimal
play.
C.2. Iowa Case Study: I-Cut-You-Freeze

The ICYF protocol as described in Algorithm 4 is applied to Iowa congressional redistricting, using the
MIP-based ICYF heuristic presented in Section 4.3 to draw the districts in Line 9. For n = 4, there are three
rounds of ICYF. Note that the third round of drawing essentially freezes the last two districts. In each round,
a time limit of 1 hour is set for the MIP solver. If an optimal solution is not found within the time limit, the
solver returns the best known solution.

Figure EC.8 depicts heuristic play of the ICYF protocol when D draws first. In the final district plan
(Figure EC.8c¢), D has district vote-shares 0.54, 0.54, 0.41, and 0.33, winning two districts. This district plan
has an SL Index of 0.87%, an efficiency gap of 8.39% in favor of D, and a partisan asymmetry of 2.16%. The
total computational time to execute the three rounds is 1 hour, 43 minutes.

In the first round, D draws two wins and packs R into two districts with margins 21.51% and 30.93%.
Solving the MIP to produce this plan takes 1 hour, when it terminates after reaching the time limit. Following
the CN freezing strategy, R freezes district 1, their least-margin win. In the second round, R redraws the
remaining three districts, producing the plan shown in Figure EC.8b. Solving this MIP takes 43 minutes.
In this plan, R wins one district and packs D into two districts with margins of 7.68% and 8.92%. Then D
freezes district 2, their least-margin win. In the third and final round, D draws districts 3 and 4. The MIP
solver terminates with optimality in 3 seconds. In the resulting district plan (Figure EC.8¢), R wins district
3 and D wins district 4 with margins 31.42% and 8.92%, respectively. As in the CN setting, this plan give

two seats to each player.
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Flgure EC.9 I-Cut-You-Freeze protocol to draw four dlstrlcts in lowa when R draws the first round.
) First round (R draws, D freezes) ) Second round (D draws, R freezes)

2 olis

) Third round (R draws)

- D majority with > 10% margin
- D majority with < 10% margin
- R majority with > 10% margin
- R majority with < 10% margin

Swapping turn order, Figure EC.9 shows heuristic ICYF play when R draws first. In the final district plan
(Figure EC.9c¢), each party wins two districts; the district vote-shares of R are, in decreasing order, 0.64,
0.62, 0.46, and 0.45. This district plan has an SL Index of 0.87%, an efficiency gap of 9.24% in favor of D,
and a partisan asymmetry of 0.20%. The total computational time to execute the three rounds is 15 minutes
and 35 seconds.

In the first round, R draws four wins and D freezes the win with maximum margin (Figure EC.9a). In the
second round, D redraws the remaining three districts, producing the district plan shown in Figure EC.9b.
In this plan, D wins two of the three districts and packs R in a district with margin 25.80%, which R freezes
to form district 2. The remaining region comprises two disconnected districts, which R is forced to redraw in
the third and final round, producing the final district plan (Figure EC.9¢). As in the CN setting, this plan
give two seats to each player. Note that if R had frozen a D-leaning district in the second round instead of
their own packed district, R could have won a third district. Hence the ICYF freezing heuristic is not always

optimal.
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C.3. Tract-Level Maps for States with 4 to 8 Districts

Figure EC.10 presents the district plans produced by the bisection protocol, using the heuristic of Section

4.1, when D draws first. Figure EC.11 presents the same for when R draws first.

Figure EC.10  District plans obtained from the bisection protocol when D draws the first round.
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Figure EC.10  (Continued) District plans obtained from the bisection protocol when D draws the first round.
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- R majority with < 10% margin
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Flgure EC. 11 Dlstrlct plans obtained from the bisection protocol when R draws the first round.
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Figure EC.11  (Continued) District plans obtained from the bisection protocol when R draws the first round.
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Appendix D: Proofs of Lemmas and Theorems

Throughout the proofs, let a | b denote the logical statement “a divides b”.

LEMMA 1. Consider the bisection protocol in the CN setting on n districts. When n=2" for some r € N,

the thresholds t,, 1 and t, ,, satisfy the system of recurrences

th1=tnn=1/2 forn=1,
tnﬁn =Nn— 2tn/2$1, and
tml = n/2 - tn/?,n/2~

Furthermore, these recurrences have closed-form solutions

b olr—1)/21-1 _ V2 ifrois even
n’l V2n/4  otherwise

and

; :n_2h/21_1:{n—\/ﬁ/2 if T is even
o n— \/%/2 otherwise.

Proof of Lemma 1. First, the recurrences are derived. When n =2° = 1, a simple majority of 1/2 suffices
to win the district, so ¢, 1 =1t,, =1/2.

When n is a larger power of two, player 1 wins all districts if and only if player 2 cannot win a single
district in either of the two pieces created by player 1 in the first round. This occurs when player 2 has a
vote-share of at most ¢,/21 in each piece. Hence ¢, =n — 2t,/2,1.

Player 1 wins at least one district if and only if player 2 cannot win every district in both pieces. Player 1
can ensure this if and only if player 2 has a vote-share of at most ¢,,5,,,,2 in one of the pieces. Player 1 must
have enough vote-share to complete that piece, so t,1=n/2— tn/2,n/2-

The correctness of the closed-form solutions follows from induction.

Base Case: r=0. Then n=2°=1, and t,; =1/2=/n/2.
Induction Step: Fix k > 0, and suppose the closed-form solutions are correct for all 0 <r < k. Let n =2*. By
the induction hypothesis, the closed-form solutions are correct for n/2. Substituting the closed-form solution

for t,,/2,,/2 into the recurrence for ¢, ; yields

o1 =n/2—n/2+2MF-1/21-1
— 2[(k—1)/21_1’

the claimed closed-form solution. Similarly, substituting the closed-form solution for ¢,,,5 into the recurrence
for t,, ., yields
tyn=n—2-2[(k=2)/21-1

— ok

the claimed closed-form solution. Hence by induction, the closed-form solutions are correct for all n =27,
reN. 0O
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LEMMA 2. Consider the bisection protocol in the CN setting on n districts. Let j € N, 0<j<mn. If j =0,
then t, ;=0. Whenn=j=1,t,;=1/2. Forn>2 and j > 1,

tn,; = klel}gg) {(a —taakt1) + (b - tb,b—(j—k)+1)}

= min {n—1t, . —ty (i ,
keK(j){ a—k+1 — Lo b—(j k)+1}

where a =|n/2] is the size of the smaller piece after the cut (side A), b= [n/2] is the size of the larger piece
(side B), and K(j)={keN: 0<k<j,0<k<a,0<j—k<b} is the set of permissible seat-shares from the

part of size a.

Proof of Lemma 2. If j =0, observe that no vote-share is needed to win zero districts, so ¢, 0 =0 for all
n. If n=j=1 (a single-district state), then a simple majority wins the district, so ¢;1 =1/2.

To prove the recurrence, let n,j € N with j < n. Suppose without loss of generality that player 1 moves
first, cutting the state of size n into pieces A and B with sizes a = |[n/2] and b = [n/2], respectively. To
win j districts in total, player 1 must win k districts from A and j — k districts from B for some k such
that 0<k<j, 0<k<a,and 0<j—k<b. Let s, and s, be player 1’s vote-shares in pieces A and B,
respectively. Player 1 wins k districts in A if and only if player 2 wins a — k districts in A, which requires
toak <@ — 84 <tyart+1- (Recall t, .41 =a by definition, so the latter inequality holds even when k =0.)
Hence s, > a —tq,q—1t1- Similarly, player 1 wins j — k districts in B if and only if player 2 wins b— (j — k)
districts in B, which requires ¢, ,_(j_x) < b— 8, <ty p_(j_r)+1. Hence s, > b—1y p_(j_x)+1. Therefore, an initial
vote-share of s =5, + s, > (@ —taq-pt1) + (b — tb,b_(j_k)_i'_l) suffices to win j districts. Taking the minimum
such vote-share lower-bound over all feasible k yields the overall minimum for player 1, i.e., the cheapest way
to win j districts total between pieces A and B. This minimum is mine ;) {n —taa—kt1 — tb,b_(j_k)ﬂ},

which is precisely the claimed recurrence for t,, ;. Hence the recurrence is correct. [

LEMMA 3. Consider the bisection protocol in the CN setting on n=2" districts, r € N. Then t,, o =0, and

< /i1
tug=tar+ Y (21—2 {—;Qi_ D (EC.1)

=0
Furthermore, an optimal choice of the number of districts to win from one of the two pieces is

for all integers 1 <j <n,

argmin{n —tn/2.n/2- k41 = tnj2.n/2-(-k)+1} (EC.2)
KeK ()

where K (j) is the set of permissible seat-shares from side A as defined in Lemma 2. If 1 <j <n/2, then j
is (one of ) the minimizer(s) in (2), and if n/2 < j <n, then n/2 is the minimizer. These choices form a

subgame perfect Nash equilibrium.

The proof of Lemma 3 uses the following facts relating floors and ceilings, which are presented without
proof (Graham et al. 1994, Exercise 3.12).
REMARK EC.1. For all integers n and all positive integers m,
—1
2= V_J 1,
m m

and
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Proof of Lemma 3. The proof is by induction on r. For the base case of r =0, n=2° = 1, and the right-
hand-side sum in (1) is zero for j = 1. The equation is trivially satisfied as ¢1 1 =t; 1. For the base case of
r=1,n=2'=2, and the right-hand-side sum in (1) is zero for j = 1. The equation is trivially satisfied as

ta1=1t21. When r=1 and j =2,

to1+ 2 (2@"2 E;_”) =ty + (2—2 L—ZD (EC.3)

=1/2+1/2 (by Lemma 1) (EC.4)
=1 (EC.5)
=2 2ft/21-t (EC.6)
=t3,. (by Lemma 1) (EC.7)

Hence the closed-form solution holds for all valid j when r =1.

Let £ > 1 be an arbitrary integer, let n =2¢ and suppose (1) and (2) hold for r =0,1,...,£ — 1. Observe
that the sum in (1) has a finite number of terms since the floor expression becomes zero when i is sufficiently
large.

We first show that (2) holds for r = ¢. There are three cases to consider.

Case 1: If j =n, then K(j) = {n/2} since the only way to win all n districts is to win all n/2 from each half.
Hence n/2 is the argmin in (2) by default.

Case 2: If n/2 < j<n, then K(j)={j—n/2,5—n/2+1,...,n/2} by definition. To prove n/2 is an argmin
in (2), it suffices to show for all k € K ()

N—tn/2m/2-n/241 — tnj2n/2—(-n/2)+1 <N —tnj2n/2-k+1 — tn/2,n/2— G—k)+1s

or equivalently,

tnj2m/2—kt1 ttn/2mn2—(G-k)+1 <tns2,1 +tn/2m/2—(Gi—n/2)+1- (EC.8)

If k=n/2, then (EC.8) holds with equality. Suppose k <n/2, and let ¥’ = j — k and j' =j —n/2. Then the
LHS of (EC.8) simplifies to

tn/2,m/2—k+1 T tnj2,m/2—k/+1

(i |n/2—k+1-1
:tn/2»1+z (2 ’ L 92i-1 J)
=0

i | /2K 11
+tn/2,1+z<21 2 {/TD (by LH.)

i=0
[(¢-2)/2]
i |m/2—k
=2tn21+ Z (2 2{ 92i-1 J)
i=0

(e=2)/2] nj2— ¥
+ Z (2“2 {—J) (removing terms equal to zero)
=0

922i—1

[(e=2)/2]
n/2—k i n/2—k+1
=22+ =5+ > (22<{TW_1)>

=1




ecl6 e-companion to Ludden et al.:

Bisection Protocol for Redistricting

A=)

[(¢=2)/2]
=2tp01+n/2—k/2—k/2-2 Z (2:7%)

i=1
[(¢=2)/2]
i /2 k—1
+ Z (2 <22i—1 o {221'—1
i=1
[(¢=2)/2] ,
iio [ M/2 E—1
+ Z (2 <22i—1 o {221'—1
i=1

1
:2%p4+nﬂ—%72—k72—2<zwﬂﬂ1_n)

[(¢=2)/2]

+2.2 > (277

=1

G (ES))
-3 (=)

= Qtn/g’l —|—TL/2
—ole/21-1 4 (1/2 _ Q—FZ/QW)

S8 ()
S (2

=2t, 01 +n/2 21217 4 /2 .27 14/20

— (tnj2,6 —tns2,1) — (tnj2,r —tnj2,1)

=dt, 51 +n— 202171 27102
—tnj2.k —tnj2w

= 2tn/2’1 +n—n- 9—T[¢/2]
—tnj2k —tnj2p

= Qtn/g,l +n— 2|—(Z+1)/2“ -t tn/Q,k - tn/Q,k/ .
Similarly, the RHS of (EC.8) simplifies to

tny2,1 ttnj2m/2—j/41

(o |n/2—5+1-1
=tlns2,1+tn/21 +Z <2 : {%J)
i=0

€202
= 2tn/2,1 + Z (2l_2 {WJ)
=0
. [(€-2)/2] .
/ / i— n/2 — ]/
=221 + "+ }: 2 |

(by Remark EC.1)

(since 2% 7' | n/2)

(separating summation terms)

(by LH.)

(since 214211 = 2t,/21)

(by LH.)

(removing terms equal to zero)

(EC.9)
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n/2—yj'
= 2tn/2,1 + %
[(e=2)/2] /2 j'
+ Z <2' 2 (222 - {221._1-‘)) (since 2%~ | n/2)
noj n [(e=2)/2]
— —i-1
—2tn/2,1+z—5+§' Z (2 )
[(e— 2)/QW
- (22 2 ({221 - J )) (by Remark EC.1)
n (1
=2t, - 2~ 14/2]
2t + T3 (2
[(¢=2)/2] [(¢=2)/21 J -1 5
i-2 i-2
- oen- . (tE]) 3
non
=2t, — — .72
21T
L ores J -1 J
T4 (2 =2) = tujeg — 5 b2 | — Bl (by LH.)
=8tajza+ 5 —n- 27 ATl
== 2tn/2,1 + g - n- 2_”/21_1 — tn/?,j’ (Since 2(2/2.‘_2 = tn/2,1)
=2t + g —oln2=2_y (since n = 2°) (EC.10)

Recall we intend to show (EC.8), or equivalently, subtracting the LHS from the RHS yields a nonnegative
value. The difference between the RHS expression in (EC.10) and the LHS expression in (EC.9) is
RHS — LHS
n _
B <2tn/2,1 +n—2 [e+n/2]-1 _ tnj2,k — LLn/2,k’)
n _
=3 +2[(e+1)/2] 2 bty o — taay
- _g +2l DRI g
+ (tnj2k —tnj21) + (tnjoper —tnj21) = (tnj2yr —tnsa1)

n
‘§+2“““’”W‘2+tn/z,1

1 -1 i —1
+ Z (21 2 ({22% IJ + V;zil J — V22i1 J)) (writing thresholds as summations)

k-1, K—1 j-1
2 2 2

75 +2lE g+
[(e—2)/2]

. k 1% j/
+ 3 (2 2<[2Qi_1w_1+{22i—_1w—1 [22% JH)) (by Remark EC.1)
i=1

n _
=3t ol enrzl=2 oy

[(¢-2)/2]

k-1 K-1 j — ;
+ 5 + 5 J T ; (22) (pulling constants from summation)
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[(e-2)/2]

+ ; <2"‘2 GQJ_J + b’fﬂ - {22‘7—1}))

= _g +2l+nr2] =2 +tn2,1
] [(e-2)/2]
k-1 k-1 j -1 o
Tt T 2. (7
i=1
[(-2)/2] ,
i— k+k J' .
= ¥ (2 (5] -[2=]) (since [a]+[4]> [+ 9])
i=1
[(e-2)/2]
_ M ofern2]-2 1 n/2 gin2
=3 e R M) DR C
=1
[(-2)/2] , :
) "+n/2 ! . by
> (21_2@2%—1/ W_MAD) ince b+ k=g =J"n/2)
i=1
n _ 1 1
=7 yolenrzl=2 4y - 51 (2121 —9)

[(e-2)/2]

S e (22) e

n n (1
D oferne]a g2 L oo
1 + +tn/2,1 + 5\ 2

oftn/2]=2 4y | —olt/21-2 _gf(+1)/2] -2

=ty 91 — 2/?172

2[(z—2)/2] -1 2[@/2)] -2

=0.

Hence (EC.8) holds for all k € K(j), as desired.
Case 3: If 1 <j <n/2, then K(j)={0,1,...,5} by definition. To prove j is an argmin in (2), it suffices to
show for all k € K(j)

n— tn/?,n/?—j+l - tn/2,n/2—0+l <n-— tn/?,n/?—k+l - tn/2,n/2—(j—k)+17

or equivalently,
tnj2,n/2—k41 Ftnj2m/2—G-k)+1 <N/24tn 2. n/2—j41- (EC.11)
If k=0, then (EC.11) holds with equality. Suppose k > 0, and let &' = j — k. Then the LHS of (EC.11)

simplifies to

tn/2m/2—k+1 ttn/2n/2—k+1

(o |n/2—k+1-1
AR Gl )
i=0

(i | m/2—K +1-1
TR (2% 2 L/TD (by LH.)

=0
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ecl9

n/2—k [¢ 2] n/2—k
=2ln 21+ 5 Tt Z <21_2 { 22i-1 J)
i=1
[(e=2)/2]
n/2—k' io | M2k
i=1
n—k—Fk
=221+ —
[(e—2)/2]
io | m/2—k+1
+ Z <2 ’V 92i-1 -1
i=1
(¢-2)/2
[ 1 i n/2—k +1 1
+ 92i—1 o
i=1
[(e-2)/2]
n—k—Fk ;
A
i=1
[(e-2)/2]
i [ /2 kE—1
+ Z <2 <22i—1 - {221'—1
i=1
[(e-2)/2]

e (2 (e )

—k—K 1
=2t,/21+ HT —2- (4—1 (QM/QT — 2))

[(e=2)/2]

+z-g. S (2

=1
[(e—2)/2]

% (=)

[(e-2)/2]

- % (=)

=2z + 5 — 20

1
Z _9-T2]
+n (2

[(e-2)/2]

) k—1 k-1
— =2 |2~ | ) X~
(=)
£-2)/2
_[(2)1 gi=2 K—11\ k-1
g 92i—1 92

=n—n-2712

— (tnjo —tnj21) — (tnjoer —tny2,1)

—n ol tns2k —tnj2, ke + 22,1

(by Remark EC.1)

(since 227! | n/2)

(Since 2”/2—'71 = Qtn/g,l)

(by IL.H.)

(since n = 2°)

(BEC.12)
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Similarly, the RHS of (EC.11) simplifies to

n
3 Ftn/2,n/2—j+1

n €22 e
=5ttt > <2“2 { o D (by LH.)
=0

n n/2—j < o |n/2—7
= — 4+t 2
5 tlny21+ 3 + ;:1: ( { 92i-1
[(e-2)/2]

_n n_J o ([n/2=5+1
_§+t"/2’1+1_§+ Z <2 ({T -1 (by Remark EC.1)

) [(e 2)/2|
7” i— 2
—2+ n/21+ E 2

=1
[(e-2)/2]

+ Z (21"2(;1./_21 BQ_jJ)) (since 2271 [ 1/2)

=§+tn/zl+————1(2ff/21—2)

i=1 i=1

=2 et
_2 n/2,1 4 2

n (1 —1
2 (5 _ Q—u/m) _ (tnm _ ]T _ tnm) (by LH.)

n n

= 20+ — 22172

2 2Ty
n —re/21-1

+g 2T

=n+t,01— glte+1)/2]-2 _ tn/2,;- (since 2142172 = tn2.1) (EC.13)

Recall we intend to show (EC.11), or equivalently, subtracting the LHS from the RHS yields a nonnegative
value. The difference between the RHS expression in (EC.13) and the LHS expression in (EC.12) is
RHS — LHS
- (n +tn21 —2 [e+n/2]-2 _ tn/2,j)

_ (n _ofte+ny/2]-1 _ bk — by + 2tn/z,1)

=tlnjok Ftnjo ke —tnj2,; —tnj21 + gl e+1)/2] -2

= (tnj2.k —tns21) F (Enj2er —tns2.1)
_ (tn/Q i —tnaa)+ 2[(2-&-1)/2] —2

(52 52 [2)
1 oft+1)/2]-2
[(e-2)/2]

- x (D)
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Il Rk SN (CRVVE B

2
[(e—2)/2] , .
_ Z <2i—2<’7 k —‘_I_F{k_—‘_l_{L—‘-Fl)) (by Remark EC.1)
92i-1 92i-1 92i-1 '
i=1
N k+k —j—1 4 olt+1)/2]-2
2
[(e-2)/2] .
i k+K J ;
> Z (2 2({222 1-‘_{2211_1-‘)) (since [z]+ [y] > [z+y])
i=1
[(e-2)/2] .
B Z (21.72) n k+k—75—-1 +2|'(z+1)/2-|—2
2
i=1
[(t=2)/2] , ,
SR
92i—1 92i—1
i=1
111( glt/2l gy LI 7L owryz)-2 (since k' = j — k)
—(—2¢/21- 2+1 1_|_2|—(e+1)/2—|
2 2

_ 2[(e+1)/21 ~2 _glt/2]-2
> 9lt/21-2 _ g[/2]-2
=0.

Hence (EC.11) holds for all k € K(j), as desired.
The above exhaustive case analysis proves (2) for n = 2¢. We will now derive the closed-form expressions
in (1) for n = 2¢ using (2) and Lemma 2. Substituting the optimal choices of k from (2) into the recurrence

of Lemma 2 gives

o= AT 2201 ~ b2/ (541 if1<j<n/2
" N —tn/2m/2-n/241 — tnj2,n/2—(j—ns2)+1  Otherwise
_ n/2—tn/2’n/2_j+1 1f1§j§n/2 (EC 14)
N —1ln/2,1 — tnj2,n/2—(j—ns2)+1  Otherwise,

where the simplification of the upper case follows from the definition of t,/2,/24+1 as n/2. The proof is
separated into two ranges of j with subcases for each based on the parity of ¢. First, suppose 1 < j <n/2.

Then by (EC.14) and the induction hypothesis,

tng =n/2=tn/2n/2-j41

n < o nj2—+1—1
= 9 —tnj21— Z <2 L 92i-1
=0
[(e=1)/21 .
n i—2 n/2—j
“poees 2 (7))
i=0
. [(e=1)/2] .
92— . 2—j+1
- g _ol(e=2)/21-1 _ % _ Z (21—2 <W‘/22+1+-‘ — 1>> (by Remark EC.1)
i=1

n . [(e=1)/2] [(e=1)/2] n/2—j+1
=D _ore21-2 2 2| n/2—J+1
=g fede S - 3 (R )

i=1
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. [(e=1)/2] [(e=1)/2] n/2 i1
re/21-2 i-2) i-2 (/A
e S e Y (2 (g B ))

(since 227! | n/2)

i=1
ey f(e=1)/21 f(e=1)/2] i
[e/21-2 ie 2 —ic1 i—2
4 ~2 + + Z (2 DI EEDY <2 {WHD. (EC.15)
=1 =1
If ¢ is even, then (EC.15) becomes
0/2
n n j 1 n o i1
U AL S Y/ ) P 21~
9= Tyt 2( >+Z< {2211
0/2
_@_’_u_i_ 9i—2 Jj—1
9 2 pot 92i—1
=tuit ) (21_2 BQHD : (EC.16)
=0

matching the desired closed-form expression. If £ is odd, then (EC.15) becomes

) )

(e-1)/2 1
_ i—2 B
S ALY (2| 5=])

=0

=to1+ i (21"2 {

=0

4
Van (o
B> <2 =)

j—1
22i—1 ’

again matching the desired closed-form expression.

Now consider the remaining range, n/2 < j <n. By (EC.14) and the induction hypothesis,

bng =N —tn/21 —tnj2,n/2-(j—n/2)+1

s (tn/z,l S (z {n/2 ~n2+1o1 D)

=0

[(e-1)/2] n—j
—p_9.90(=2)/21-1 _ i—2 _
o2 > (2]5=))

i=0

= —2rf/2w—1__"_j_w_zl):m gi-2 (|P—JH1)
- 2 922i—1

i=1
. [(e=1)/2]

2 _9ofe/2]- 1_|_ + Z 21 2
. F(Z 1)/21

2 __9ofe/2]- 1_|_ + Z 21 2

If ¢ is even, then (EC.17) becomes

tn,j

(by Lemma 1)

(by Remark EC.1)

(by Remark EC.1)

[(e—-1)/2] .
Z giz (_n__|J—1
— 22i—1 22i—1

[(e=1)/2] [(e-1)/21 i q
Yooy Y <2¢_2 BQHD . (EC.17)
i=1 i=1

noVi gL - S (22|11
s IO NG D CRR I N CRlt o)

=1 i=1
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matching the desired closed-form expression. If £ is odd, then (EC.17) becomes

" i (e=1)/2 (e-1)/2 (¢-1)/2 i1
AR TED SN B SR R D SN E =)

i=1 =1 =1

\V]

(e—1)/2—1

2n j 1 1 ol J—1
StpeEe (G g) e X (2 )
. (e-1)/2 .
_V2n g1 io | J—1
S )
=1
(e-1)/2 _
- (2%‘-2 BQHD (EC.18)
=0
= 3 g2 |11 by L 1
—tn,1+z 55T | ) (by Lemma 1)
=0

again matching the desired closed-form expression. The above cases are exhaustive, so (1) holds for all

|3

i e

1 <j <n. By induction, (1) holds for all » € N, n=2". Since the choices in (2) are optimal for all powers of
two, and the number of districts in any subgame is a power of two when the starting number of districts is

a power of two, the choices of (2) form a subgame perfect Nash equilibrium. O
THEOREM 1. Let f:[0,1] = [0,1] be given by f(v) =v. Then (far) -, converges uniformly to f.

Proof of Theorem 1. Since f, is a step function, |f,(v) — f(v)| is maximized at some threshold point

(F=i, 1) or (=2 1) for some j € [n] = {1,2,...,n}. There are finitely many (2n) such points, so the

maximum deviation of f, from f is well-defined as

by — (G =D |tw;—7
An:mp{m{| sG] s ﬂ}}'
j€ln] n n

It suffices to show that for arbitrary € > 0, there exists some N € N such that for all powers of two n > N,
A, <e.

An upper bound on t,, ; —j is obtained by removing the floor from (1) and summing to infinity:

~i=tar 2 (272 )

=0

Sty (277207 1)) -

=0

1 .
_ of[(loga(n)—1)/2]-1 (s —i | _ s
= gf(log, + 2(] 1) (E 2 ) j
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1 . .
— 9l(ogy(n)=1)/21-1 | 5(] —1)-2—j

< l(loga(m)~1)/21-1

which is either \/n/2 or v/2n/4 depending on the parity of log,(n). Hence the upper bound is

ths—j < g (EC.19)

Similarly, a lower bound on ¢, ; — j is obtained by applying Lemma EC.1 to convert the floor to a ceiling

and then removing the ceiling:

[logs(n)/2] )
tomi=tut X (27| 5= )
=0
i [logz(n)/2] i
e X (7 p])
=1
logy(n)/2
:tn,l—%—%_i_[ > W<2i—2({j;21#11-‘_1>> (by Remark EC.1)
_— [log(n) /2] . [loga(n)/2]
_, i1 1 2|—10g2(n)/2-‘ , .[logz(")/Q—l o
=553 AT AP DRNCES

2 ‘
i=1
=t — J 2[1052(71)/2]—1 +j l (1 _9- [1052(71)/2])
2 2
=t 2[10g2(n)/21—1 o [loga(n)/2]-1

>t _2[1052(71)/21—1 _n'2—|—logz(n)/2-|—1. (since ]Sn) (ECQO)

Let r € N, r =log,(n). If r is even, then by Lemma 1, (EC.20) becomes

P VU AT
: 2 2 2/m
n
2
If r is odd, then by Lemma 1, (EC.20) becomes
¢ . Vn  V2n n
mI =Ty 2 22
_ V2n
2
Hence the lower bound is
V2
th,—j> __2”, (EC.21)
The bounds (EC.19) and (EC.21) imply
LoV by =g 1 oyn
n 2 - n ~n 2
L _tay—j_ 1
Vvan n - 2\/ﬁ
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The (negative) lower bound is larger in magnitude, so

e =2 EC.22
n ~V2n ( )
Applying the above approach to obtain similar bounds for ¢, ; — (j — 1) yields

th;—(j—1 2
oy =G =1 _ V2R EC23)

n 2

By (EC.22) and (EC.23),
th,— (=1 [th,;—J
= sup f Vo =1 Vs~
j€[n] n n

1

< —.
T V2n

Let € >0 be arbitrary, and let N =[1/(2¢?)]. Then for all n > N,

A,

IN

IA
3-8

1

= V2-1/(2¢2)

[l

as desired. Therefore, (f2r)°-, converges uniformly to f. O

THEOREM 2. Let § € (0,1/2), v=1/2—46, and a € [y,1 —7]. In the bisection protocol with packing param-
eter & and n a power of two, the seat-share won by player 1 with a normalized vote-share of a obeys the

limiting distribution

. o —
Jim for () = T3

In the I-cut-you-freeze protocol with packing parameter § and arbitrary n, the seat-share won by player 1 with

a normalized vote-share of o obeys the limiting distribution

2
. a(n,an) 2 (-ﬁ) fory<a<i
im ————~ = 9
n—oo n 1—2(1—(%)) for%<o¢§1—7,

where o(n, s) denotes the number of seats won by player 1 under optimum play of the I-cut-you-freeze protocol

with n districts and player 1 vote-share s.

Proof of Theorem 2. Note that both protocols are feasible if and only if 7 <a <1 —+. Requiring s; ; €
[v,1 — 7] ensures that each player has a vote-share of at least + in every district. If these vote-shares are
preassigned, then the redistricting problem reduces to choosing n districts of size 1 — 2+ with the vote-shares
s1 and ss each reduced by yn. If player 1 begins with vote-share an, then player 1 has (o — v)n vote-share
remaining after this preassignment. In the reduced problem, player 1’s vote-share in each district can range
from 0 to 1 — 27, so the normalized vote-share is effectively o/ = (o —7)/(1 — 27).

The limiting seats-votes curve for the bisection protocol follows from substituting o’ for v in the RHS of
the definition of f in Theorem 1. Similarly, the limiting seats-votes curve for the I-cut-you-freeze protocol

follows from substituting o’ for « in Theorem 2.3 of Pegden et al. (2017). O
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THEOREM 3. Let G = (V,E) be an undirected graph with vertex weights w:V — Ry and vertex popula-
tions p: V — Ryq. For a vertex subset S, define w(S) =), _sw(v) and p(S) =), _sp(v). Let BALANCED-
BISECTION be the problem of deciding whether G admits a bisection (connected 2-partition) into components
Dy, Dy such that w(D;) =w(Dy) and p(Dy) = p(Dy). The problem BALANCEDBISECTION for 3 x M grid
graphs is NP-complete.

Proof of Theorem 3. Clearly, BALANCEDBISECTION is in NP, since a satisfying bisection can be verified
in polynomial time by summing the weights and populations for the two components, comparing the totals,
and verifying the two components form a connected 2-partition. The proof of NP-hardness is by reduction
from PARTITION, the known NP-complete problem of deciding whether a multiset S of M integers admits a
partition Sp, S5 such that S; and S; have the same sums.

Let S ={s1, 82,...,8x} be an arbitrary instance of PARTITION. Construct a 3 x M grid graph G with row
indices 1 to 3 and column indices 1 to M. For all i € [M], assign weights w(2,7) = s; and w(1,7) = w(3,7) =0.
Similarly, for all ¢ € [M], assign populations p(2,i) =s,; and p(1,i) =p(3,7) =1.

To prove correctness of the reduction, it suffices to show the following claim.

Claim: For any @) # S; C [M] with complement Sz, there is a connected 2-partition of G with {(2,)}ics,
in one component and {(2,7)};cs, in the other component.

Proof of Claim. Let Ry be the first row of G, and let Rs be the third row of G. Let one component be
Ry U{(2,9) }ies,, and let the other component be R; U{(2,4)};cs,. Then these two components comprise the
desired 2-partition of G. U

Figure EC.12 illustrates the construction in the proof on a small example. A balanced bisection of the

3 x M grid graph corresponds to a solution of the corresponding PARTITION instance.

Figure EC.12 An example of the construction in the proof of Theorem 3 for a PARTITION instance with M =5.

Row 1 0 0 0 0 0
Row 2 $1 S2 83 54 S5
Row 3 0 0 0 0 0

PARTITION solution: S; = {s2, 83,85}, S2 = {s1,84}

Suppose the given PARTITION instance S has a solution S, Ss. Let G1, G5 be a bisection of G as guaranteed
by the claim. Then G; and G2 have the same total weights, as

w(Gy) = Z w(2,1)

i€S1

~Ys,

i€S1



e-companion to Ludden et al.: Bisection Protocol for Redistricting ec27

Similarly, G; and G2 have the same populations, as

p(Gh) =M+ p(2,i)

=

:M—l—Zsi

=

:M—l—Zsi

1€Sy

=M+ p(2i)

i€So
=p(Ga).
Hence the given PARTITION instance has a solution if and only if the constructed BALANCEDBISECTION
instance has a solution, so the reduction is proved. Since BALANCEDBISECTION is both NP-hard and in NP,

we conclude it is NP-complete. [



